многообразие

  • 41ПАРАЛЛЕЛИЗУЕМОЕ МНОГООБРАЗИЕ — многообразие Мразмерности п, допускающее поле реперов е= (е 1; . . ., е п), то есть и линейно независимых в каждой точке векторных полей е г, . . ., е п. Поле езадает изоморфизм касательного расслоения на тривиальное расслоение , сопоставляющий… …

    Математическая энциклопедия

  • 42АНАЛИТИЧЕСКОЕ МНОГООБРАЗИЕ — многообразие с аналитич. атласом. Структура n мерного аналитич. многообразия над полным недискретно нормированным полем kна топологич. пространстве Мопределяется заданием на Маналитич. атласа над k, т. е. набора карт со значениями в kn,… …

    Математическая энциклопедия

  • 43ЗЕЙФЕРТА МНОГООБРАЗИЕ — многообразие, имеющее Зейферта расслоение. А. В. Чернавспий …

    Математическая энциклопедия

  • 44НЕОРИЕНТИРУЕМОЕ МНОГООБРАЗИЕ — многообразие, не допускающее ориентации. Таковы, напр., Мёбиуса лист, Клейна поверхность, проективное пространство четной размерности, М. И. Войцеховский. НЕОСОБАЯ ГРАНИЧНАЯ ТОЧКА, правильная граничная точк а, достижимая граничная точка области… …

    Математическая энциклопедия

  • 45ОТКРЫТОЕ МНОГООБРАЗИЕ — многообразие, не имеющее компактных компонент, т. е. не являющееся замкнутым многообразием. М. И. Войцеховский …

    Математическая энциклопедия

  • 46СИМПЛЕКТИЧЕСКОЕ МНОГООБРАЗИЕ — многообразие, снабженное симплектической структурой …

    Математическая энциклопедия

  • 47АЛГЕБРАИЧЕСКИХ СИСТЕМ МНОГООБРАЗИЕ — алгебраических систем класс фиксированной сигнатуры и, аксиоматизируемый при помощи тождеств, т. е. формул вида где к. л. предикатный символ из или знак равенства, а термы сигнатуры Q от предметных переменных А. с. м. наз. иначе э к,… …

    Математическая энциклопедия

  • 48ГРУПП МНОГООБРАЗИЕ — класс всех групп, удовлетворяющих фиксированной системе тождественных соотношений где vпробегает нек рое множество Vгрупповых слов, т. е. элементов свободной группы X со свободными образующими x1,..., xn ... . Как и всякое алгебраических систем… …

    Математическая энциклопедия

  • 49Центральное многообразие — особой точки автономного обыкновенного дифференциального уравнения инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения.… …

    Википедия

  • 50ДРЕВОВИДНОЕ МНОГООБРАЗИЕ — гладкое нечетномерное многообразие специального вида, являющееся краем четномерного многообразия, строящегося из расслоений над сферами с помощью склеек по схеме, задаваемой нек рым графом (деревом). Пусть pi: i= 1,2, ... расслоение над n сферами …

    Математическая энциклопедия

  • 51НЕСГЛАЖИВАЕМОЕ МНОГООБРАЗИЕ — кусочно линейное или топологическое многообразие, не допускающее гладкой структуры. Сглаживанием кусочно линейного многообразия Xназ. кусочно линейный изоморфизм где М гладкое многообразие. Многообразие, не допускающее сглаживания, и наз.… …

    Математическая энциклопедия

  • 52Шершавое многообразие — Шершавое или несглаживаемое многообразие  топологическое многообразие, не допускающее гладкой структуры. Более точно, топологическое многообразие не гомеоморфное никакому гладкому многообразию. Содержание 1 Пример …

    Википедия

  • 53КОЛЕЦ МНОГООБРАЗИЕ — класс колец M, удовлетворяющих заданной системе полиномиальных тождеств. К. м. можно определить аксиоматически, как наследственный класс алгебр, замкнутый относительно взятия гомоморфных образов и полных прямых сумм (см. Алгебраических систем… …

    Математическая энциклопедия

  • 54КЭЛЕРОВО МНОГООБРАЗИЕ — комплексное многообразие, на к ром можно ввести Кэлера метрику. Иногда такие многообразия на …

    Математическая энциклопедия

  • 55ПОЛУГРУПП МНОГООБРАЗИЕ — класс полугрупп, задаваемый системой тождеств (см. Алгебраических систем многообразие). Всякое П. м. будет либо периодическим, т. е. состоит из периодич. полугрупп, либо надкоммутативным, т …

    Математическая энциклопедия

  • 56Дифференцируемое многообразие — Дифференцируемое многообразие  топологическое пространство, наделенное дифференциальной структурой. Дифференциальные многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях… …

    Википедия

  • 57ПИКАРА МНОГООБРАЗИЕ — полного гладкого алгебраического многообразия Xнад алгебраически замкнутым полем абелево многообразие , параметризующее факторгруппу Diva(X)/P(X).группы Diva(X). дивизоров, алгебраически эквивалентных нулю, по группе главных дивизоров Р(X), т. е …

    Математическая энциклопедия

  • 58НЕПРИВОДИМОЕ МНОГООБРАЗИЕ — алгебраическое многообразие, являющееся неприводимым топологическим пространством в топологии Зариского. Иначе говоря, Н. м. алгебраич. многообразие, к рое нельзя представить в виде объединения двух собственных замкнутых алгебраич.… …

    Математическая энциклопедия

  • 59Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения …

    Википедия

  • 60Симплектическое многообразие — Симплектическое многообразие  это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной 2 формой. Симплектическое многообразие позволяет естественным геометрическим образом ввести гамильтонову механику и даёт …

    Википедия